
CS 58500 – Theoretical Computer 
Science Toolkit

Lecture 0 (01/13)

Introduction

https://ruizhezhang.com/course_spring_2026.html

https://ruizhezhang.com/course_spring_2026.html


About Me

January 13, 2026 1

Ruizhe Zhang 

▪ Assistant Professor, Purdue CS

▪ Research: Theory--quantum computing, optimization, ML theory

▪ Homepage: https://ruizhezhang.com/

▪ Email: rzzhang@purdue.edu

https://ruizhezhang.com/
https://ruizhezhang.com/
https://ruizhezhang.com/


Today’s Lecture
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• Course content

• Logistics

• Some motivating examples



Course Content
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TCS toolkit

TCS = Theoretical Computer Science

≈ Algorithms + Computational Complexity

≈ STOC/FOCS topics
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• algorithms and data structures

• computational complexity

• randomness in computing

• algorithmic graph theory and 
combinatorics

• analysis of Boolean functions

• approximation algorithms

• cryptography

• computational learning theory

• continuous and discrete 
optimization

• economics and computation

• parallel and distributed algorithms

• quantum computing

• algorithmic coding theory

• computational geometry and 
topology

• computational applications of 
logic

• algebraic computation

• computational and 
foundational aspects of areas 
such as machine learning, 
fairness, privacy, networks, 
data management, databases 
and computational biology.



What is TCS?
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Course Content
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Introduce Foundational Topics in Theoretical Computer Science & Machine Learning 

❖ Mathematical Foundations 

❖ Wide Applications in Computer Science



Grand Aim
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Covers fundamental techniques and a range of mathematical tools that underlie today’s 

research in theoretical computer science

• Essential knowledge for students pursuing research in theoretical computer science or machine 

learning theory

➢ Reading TCS papers

➢ Attending TCS talks

➢ Solving TCS problems



Target audience
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Current graduate and undergrad students interested in pursuing research in these areas

• Undergraduates interested in taking the course should contact the instructor for permission

Prerequisites: Mastery of the material covered in

• Calc III (Math 261)

• Linear Algebra (Math 265)

• Probability (STAT 416)

• Foundations of CS (CS 182)

• Analysis of Algorithms (CS 381 or CS 580)

“Mathematical maturity” is important!



Tentative List of Topics
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Mathematical Basics

• Inequalities: Jensen’s Inequality and consequences

• Summations/Integrals

• Stirling Approximation



Tentative List of Topics
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Concentration Inequalities

• Markov Inequality, Chebyshev Inequality

• Chernoff-Hoeffding Bound

• Azuma’s Inequality, McDiarmid’s Inequality

• Concentration of measure

• Talagrand Inequality

• Matrix concentration inequalities



Tentative List of Topics
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Selected Topics in Convex Analysis and Optimization

• Introduction to convex sets and functions

• Separating hyperplane theorem, Grünbaum’s lemma

• Brunn-Minkowski inequality

• Isoperimetric inequalities and localization

• Strong convexity and oracle complexity of gradient descent

• Polynomial approximations



Tentative List of Topics
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Foundations of Spectral Methods

• Positive semi-definiteness, Spectral and singular value decompositions

• Courant–Fischer–Weyl minimax theorems

• Perron–Frobenius theory

• Matrix norms and perturbation theory

• Exander graphs

• Random walks and Markov chains

• Ramanujan graphs, interlacing polynomials, and Free Probability Theory



Tentative List of Topics
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Discrete Fourier Analysis on the Boolean Hypercube

• Basic properties of discrete Fourier transform

• BLR linearity testing

• Query complexity, degrees, and sensitivity

• Hypercontractivity

• KKL Theorem, and isoperimetric inequality over Boolean hypercube



Today’s lecture
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•

• Logistics

• Some motivating examples



Course Instruction

January 13, 2026 15

https://ruizhezhang.com/course_spring_2026.html

https://piazza.com/class/mkc2aeu03z2m4

• Course website: https://ruizhezhang.com/course_spring_2026.html

• Brightspace for announcements and problem set submissions

• Piazza for discussions

• Access 1: Brightspace → Content → Piazza → Piazza 1.3

• Access 2: https://piazza.com/class/mkc2aeu03z2m4

https://ruizhezhang.com/course_spring_2026.html
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpiazza.com%2Fclass%2Fmkc2aeu03z2m4&data=05%7C02%7Crzzhang%40purdue.edu%7C1272663f5ee646a2cf6808de5258c48a%7C4130bd397c53419cb1e58758d6d63f21%7C1%7C0%7C639038738372157409%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=xm0JJsV9YEilN3Zm4XkYeWi4q%2BWswPyOGE51icLGQ18%3D&reserved=0


Grading

January 13, 2026 16

• 30% Problem sets (roughly three or four)

• 25% Midterm (date will be announced later, probably a late midterm)

• 40% Final project (oral presentation + report; Individual or pairs)

• 5% Class Participation



Office Hours
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• Office hour with Instructor: By Appointment Only

• Office hour with TA: Friday 10:30 – 11:30 am at DSAI B055



Concluding Remarks
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• This course will be challenging; We are here to work together

• We will collaboratively learn from each other

• Don’t hesitate to stop me at any point to ask questions.



Today’s Lecture
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•

•

• Some motivating examples



Example 1: Computing volumes in high dimensions
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• Let 𝑑 ≥ 2 be the dimension of the space

• High-dimensional geometric problem: the size of input is a function of 𝑑, and we care about the 

complexity of the computational problem as 𝑑 grows 

𝑟 𝑟

Cube (side-length 𝑟)?

Vol = 𝑟𝑑

Ball (radius 𝑟)?

Vol =
𝑐

𝑑

𝑑/2

𝑟𝑑

Polytope?

Need an algorithm!



Example 1: Computing volumes in high dimensions

January 13, 2026 21

Our goal is to approximately compute the volume of the given convex body 𝐾

• Exact computation is #P-hard (even for a polytope)

• Convexity is a natural and necessary assumption (will be formally defined later in this course)

How to get access to the convex body 𝐾?

• We can query a membership oracle: “𝑥 ∈ 𝐾?” for any 𝑥 ∈ ℝ𝑑

Let’s start with the 2‐d case

• Pick a set of points 𝑥1, … , 𝑥𝑛  and see if they are in it 

• Then output the convex hull of 𝑥𝑖 ∶ 𝑥𝑖 ∈ 𝐾, 𝑖 ∈ 𝑛

Does this give a poly time algorithm? 

• Yes, if 𝐾 is “well-rounded” (i.e., 𝐵2
𝑑 ⊆ 𝐾 ⊆ 𝑑𝐵2

𝑑)

• Could even be a deterministic algorithm
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Our goal is to approximately compute the volume of the given convex body 𝐾

• Exact computation is #P-hard (even for a polytope)

• Convexity is a natural and necessary assumption (will be formally defined later in this course)

How to get access to the convex body 𝐾?

• We can query a membership oracle: “𝑥 ∈ 𝐾?” for any 𝑥 ∈ ℝ𝑑

Let’s start with the 2‐d case

• Pick a set of points 𝑥1, … , 𝑥𝑛  and see if they are in it 

• Then output the convex hull of 𝑥𝑖 ∶ 𝑥𝑖 ∈ 𝐾, 𝑖 ∈ 𝑛

Does this give a poly time algorithm? 

• Yes, if 𝐾 is “well-rounded” (i.e., 𝐵2
𝑑 ⊆ 𝐾 ⊆ 𝑑𝐵2

𝑑)

• Could even be a deterministic algorithm

Doesn’t work in higher 
dimensions!
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Theorem.  A deterministic 2𝛿𝑑-approximation algorithm requires 2 1−𝛿 𝑑  oracle queries.

Maybe a Monte Carlo algorithm?

• Pick random points in the ball

• See how many of them are in 𝐾
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Theorem.  A deterministic 2𝛿𝑑-approximation algorithm requires 2 1−𝛿 𝑑  oracle queries.

Maybe a Monte Carlo algorithm?

• Pick random points in the ball

• See how many of them are in 𝐾

Doesn’t work in higher 
dimensions!

When 𝐾 is a cube inside 𝐵2
𝑑,

Vol 𝐾

Vol 𝐵2
𝑑

≤ 𝑒−Ω 𝑑

Need exponentially many points!
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Dyer-Frieze-Kannan algorithm

1. Change coordinates s.t. 𝐾 is well-rounded, 𝐵2
𝑑 ⊆ 𝐾 ⊆ 𝑅𝐵2

𝑑

2. Let 𝐾𝑖 ≔ 2𝑖/𝑑𝐵2
𝑑 ∩ 𝐾 so that 𝐾0 = 𝐵2

𝑑  and 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚−1 ⊆ 𝐾𝑚 ≔ 𝐾

3. Compute

𝛾𝑖 ≔
Vol(𝐾𝑖−1)

Vol 𝐾𝑖

4. Output 

𝑉 ≔ Vol 𝐵 ⋅ ෑ
𝑖=1

𝑚 1

𝛾𝑖

Vol 𝐾 = Vol 𝐾0 ⋅
Vol 𝐾1

Vol 𝐾0
⋅

Vol 𝐾2

Vol 𝐾1
⋅ ⋯ ⋅

Vol(𝐾𝑚)

Vol 𝐾𝑚−1

𝛾𝑖 ≥
1

2
, estimate via Monte Carlo

Using concentration inequality, we 

can show that 𝑉 ≈ 𝔼 𝑉 = Vol 𝐾
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Dyer-Frieze-Kannan algorithm

1. Change coordinates s.t. 𝐾 is well-rounded, 𝐵2
𝑑 ⊆ 𝐾 ⊆ 𝑅𝐵2

𝑑

2. Let 𝐾𝑖 ≔ 2𝑖/𝑑𝐵2
𝑑 ∩ 𝐾 so that 𝐾0 = 𝐵2

𝑑  and 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚−1 ⊆ 𝐾𝑚 ≔ 𝐾

3. Compute

𝛾𝑖 ≔
Vol(𝐾𝑖−1)

Vol 𝐾𝑖

4. Output 

𝑉 ≔ Vol 𝐵 ⋅ ෑ
𝑖=1

𝑚 1

𝛾𝑖

DFK algorithm as a reduction: 

volume estimation  ⟹  sampling (uniformly sample from 𝑟𝐵2
𝑑 ∩ 𝐾)

𝛾𝑖 ≥
1

2
, estimate via Monte Carlo
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How to draw a uniformly random sample from a convex body?

• Basic idea: construct a Markov chain so that the stationary distribution is the target uniform distribution 

over the convex body

“Running a randomized algorithm that simulate some stochastic process. When the simulation time →

∞, the output distribution of the algorithm is the uniform distribution”

How fast does Markov chain mix? (How long should we run the simulation algorithm?)

• Deep connection to important mathematical questions in Asymptotic Convex Geometry and Functional 

Analysis (e.g., isoperimetry, localization, concentration of measure, KLS conjecture, Bourgain's slicing 

conjecture, etc.)

                                            We’ll discuss some of them in this course



Example 1: Computing volumes in high dimensions

January 13, 2026 28

Lee-Vempala ’16: under KLS conjecture and for a “good” convex body 𝐾, ball walk can sample uniformly 

over 𝐾 in 𝒪 𝑑2.5  steps

𝒙

𝒚
𝒚

𝒛
𝒚

𝒛′



Example 2: Quantum and Boolean function analysis
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Now, let’s talk about quantum computing, a “new” topic in TCS 

• It’s actually not new at all. 

➢ Shor’s algorithm was developed in 1994. 

➢ ‘Quantum computation’ became a topic of interest in STOC around 1997, and in FOCS in 1999. 

• It’s new probably because quantum computing headlines appear every day (>90% is hype )

How powerful is QC from a computational 

complexity perspective?



Example 2: Quantum and Boolean function analysis
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Black-box model / oracle model / query complexity model

• 𝑓: 0,1 𝑛 → 0,1 , and tt 𝑓 ∈ 0,1 2𝑛
 is the input of some decision problem

• How many (classical/quantum) queries are needed to solve the decision problem?

𝑈𝑓

𝑥

𝑦

𝑥

𝑦 ⊕ 𝑓 𝑥

𝑥 𝑓 𝑥𝐶𝑓

Classical query Quantum query
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Positive result: Forrelation

Given 𝑓, 𝑔 ∈ 0,1 𝑛 → −1,1 , the forrelation is defined as

Φ 𝑓, 𝑔 ≔ 2− Τ3𝑛 2 ෍

𝑥,𝑦∈ 0,1 𝑛

𝑓 𝑥 𝑔 𝑦 −1 𝑥⋅𝑦

Decide Φ 𝑓, 𝑔 ≤ Τ1 100 or Φ 𝑓, 𝑔 ≥ Τ3 5

• Quantum algorithm just need 1 query while any classical algorithm need 2Ω 𝑛  queries!

Negative result: Aaronson-Ambainis Conjecture 

Any quantum algorithm that makes 𝑇 queries to compute a Boolean function, ∃ classical algorithm that 

makes only poly T  queries and is correct for “most” of the inputs.

No “big” quantum speedup for generic unstructured decision problem!  

≡ “Fourier Correlation”
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AA conjecture is equivalent to the following conjecture in Boolean function analysis with 

no quantum at all:

• Any function 𝑓: −1,1 𝑛 → ℝ can be expressed as 

𝑓 𝑥 = ෍

𝑆⊂ 𝑛

𝑎𝑆 ෑ

𝑖∈𝑆

𝑥𝑖 ,  𝑎𝑆 ∈ ℝ, 𝑥 ∈ ±1 𝑛

and we define the degree of 𝑓 as 𝑑 ≔ max
𝑎𝑆≠0

𝑆   (think of 𝑓 as a polynomial)

• For any 𝑓: ±1 𝑛 → 0,1 , there exists a coordinate 𝑖 ∈ 𝑛  such that

𝔼 𝐷𝑖𝑓 2 ≥
𝔼 𝑓 − 𝔼 𝑓

2

𝑑

𝒪 1

,  where 𝐷𝑖𝑓 𝑥 =
1

2
𝑓 𝑥 − 𝑓 𝑥−𝑖

Influence Variancevs. Flip the i-th bit



Announcements
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1. I’ll be out of town on Thursday (01/15), and the class will be canceled

2. Homework: watch the following video lectures by Ryan O'Donnell:

• How to do CS Theory (https://youtu.be/YFUIPg8P2sY?si=lgqbx40_qv6Ouhka)

• Street Fighting Mathematics (https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_)

https://youtu.be/YFUIPg8P2sY?si=lgqbx40_qv6Ouhka
https://youtu.be/YFUIPg8P2sY?si=lgqbx40_qv6Ouhka
https://youtu.be/YFUIPg8P2sY?si=lgqbx40_qv6Ouhka
https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_
https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_
https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_
https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_
https://youtu.be/qP4XEZ54eSc?si=XxXrdhxuqMmdMKn_
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