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About Me

Ruizhe Zhang

= Assistant Professor, Purdue CS
= Research: Theory--quantum computing, optimization, ML theory

= Homepage: https://ruizhezhang.com/

=  Email: rzzhang@purdue.edu
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Today’s Lecture

- Course content
- Logistics

- Some motivating examples
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Course Content

TCS toolkit

TCS = Theoretical Computer Science
~ Algorithms + Computational Complexity

~ STOC/FOCS topics
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algorithms and data structures computational learning theory computational geometry and

: . : . topolo
computational complexity - continuous and discrete POIOgY
: . optimization - computational applications of
randomness in computing logic

: : - economics and computation
algorithmic graph theory and P

combinatorics - parallel and distributed algorithms algebraic computation
- computational and
foundational aspects of areas
approximation algorithms - algorithmic coding theory such as machine learning,
fairness, privacy, networks,
data management, databases

and computational biology.

analysis of Boolean functions - quantum computing

cryptography
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i ?
Wh at IS TCS ° 7. The very old debate: Karp’s committee vs. Wigderson & Goldreich. There
was a related very interesting debate almost thirty years ago that is discussed in this
Moshe Vardi: What is Theoretical blog post over the blog Computational Complexity (CC) that present the two positions

Posted on October 20, 2024 by Gil Kalai as follows:
(Karp’s committee:) In order for TOC to prosper in the coming years, it is essential

to strengthen our comt
disciplines, and to incr

Engineering

(Oded and Avi’s viey
essential that Theoreti¢
Theorv of Computing a

Mathematics

Moshe Vardi wrote a short interesting essay “What is theoretical computer scie

followed by interesting posts on Facebook.) Moshe argues that

Other areas of
science

and humanities

Thinking of theoretical computer science (TCS) as a branch of mathemat
is harmful to the discipline.
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Course Content

Introduce Foundational Topics in Theoretical Computer Science & Machine Learning

% Mathematical Foundations

< Wide Applications in Computer Science
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Grand Aim

Covers fundamental techniques and a range of mathematical tools that underlie today’s
research in theoretical computer science

Essential knowledge for students pursuing research in theoretical computer science or machine
learning theory

> Reading TCS papers
> Attending TCS talks
> Solving TCS problems
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Target audience

Current graduate and undergrad students interested in pursuing research in these areas

Undergraduates interested in taking the course should contact the instructor for permission

Prerequisites: Mastery of the material covered in

Calc Il (Math 261)

Linear Algebra (Math 265)

Probability (STAT 416) . _ o
“Mathematical maturity” is important!

Foundations of CS (CS 182)

Analysis of Algorithms (CS 381 or CS 580)
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Tentative List of Topics

Mathematical Basics
Inequalities: Jensen’s Inequality and consequences
Summations/Integrals

Stirling Approximation
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Tentative List of Topics

Concentration Inequalities
Markov Inequality, Chebyshev Inequality
Chernoff-Hoeffding Bound
Azuma’s Inequality, McDiarmid’s Inequality
Concentration of measure

Talagrand Inequality

Matrix concentration inequalities
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Tentative List of Topics

Selected Topics in Convex Analysis and Optimization
Introduction to convex sets and functions
Separating hyperplane theorem, Griinbaum’s lemma
- Brunn-Minkowski inequality
Isoperimetric inequalities and localization
Strong convexity and oracle complexity of gradient descent

Polynomial approximations
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Tentative List of Topics

Foundations of Spectral Methods
Positive semi-definiteness, Spectral and singular value decompositions
Courant—Fischer—Weyl minimax theorems
Perron—Frobenius theory
Matrix norms and perturbation theory
Exander graphs
Random walks and Markov chains

Ramanujan graphs, interlacing polynomials, and Free Probability Theory
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Tentative List of Topics

Discrete Fourier Analysis on the Boolean Hypercube
Basic properties of discrete Fourier transform
BLR linearity testing

- Query complexity, degrees, and sensitivity
Hypercontractivity

KKL Theorem, and isoperimetric inequality over Boolean hypercube
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Today’s lecture

« Logistics

- Some motivating examples
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Course Instruction

- Course website: https://ruizhezhang.com/course_spring_2026.html

- Brightspace for announcements and problem set submissions

« Piazza for discussions

Access 1: Brightspace — Content — Piazza — Piazza 1.3

Access 2: https://piazza.com/class/mkc2aeu03z2m4
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Grading

« 30% Problem sets (roughly three or four)
- 25% Midterm (date will be announced later, probably a late midterm)
- 40% Final project (oral presentation + report; Individual or pairs)

- 5% Class Participation
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Office Hours

-« Office hour with Instructor: By Appointment Only

- Office hour with TA: Friday 10:30 — 11:30 am at DSAI BO55
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Concluding Remarks

- This course will be challenging; We are here to work together
- We will collaboratively learn from each other

- Don’t hesitate to stop me at any point to ask questions.
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Today’s Lecture

Some motivating examples
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Example 1: Computing volumes in high dimensions

Let d = 2 be the dimension of the space

High-dimensional geometric problem: the size of input is a function of d, and we care about the

complexity of the computational problem as d grows

<_ >

T 6 AN SuEs,
Cube (side-length r)? Ball (radius r)?
Vol = r¢ cnd/2
_ (= d
Vol = (d) r
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Example 1: Computing volumes in high dimensions

Our goal is to approximately compute the volume of the given convex body K
- Exact computation is #P-hard (even for a polytope)

Convexity is a natural and necessary assumption (will be formally defined later in this course)
How to get access to the convex body K?

We can query a membership oracle: “x € K?” forany x € R?

Let’s start with the 2-d case

Pick a set of points {x4, ..., x,,} and see if they are in it ,/
Then output the convex hull of {x; : x; € K,i € [n]} (/
Does this give a poly time algorithm? \
- VYes, if K is “well-rounded” (i.e., B¢ € K € dBY) \\

Could even be a deterministic algorithm
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Example 1: Computing volumes in high dimensions

Our goal is to approximately compute the volume of the given convex body K
Exact computation is #P-hard (even for a polytope)
Convexity is a natural and necessary assumption (will be formally defined later in this course)
How to get access to the convex body K?
We can query a membership oracle: “x € K?” forany x € R?
Let’s start with the 2-d case
Pick a set of points {x4, ..., x,,} and see if they are in it x Doesn’t work in higher
Then output the convex hull of {x; : x; € K,i € [n]} dimensions!
Does this give a poly time algorithm?
Yes, if K is “well-rounded” (i.e., BY € K € dB%)
Could even be a deterministic algorithm
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Example 1: Computing volumes in high dimensions

Theorem. A deterministic 2°¢-approximation algorithm requires 2(1=-8)d 5racle gueries.

Maybe a Monte Carlo algorithm?
- Pick random points in the ball

- See how many of them are in K

January 13,2026

23

weleone A5 Ranalomi zed A \80(\‘\'\«an

Sundamentalo) gor Whms. com/ candomized

Randomized Algorithms, CS588, Fall 2025

Lectures: 4:30 to 5:45 PM. Tuesday and Thursday, in Forney Hall G124.

Staff: Email (epurdue.eds)y Office hours

Kent Quanrud krqg Tuesday, 2-3PM. Lawson 1211
Tanmay Devale tdevale TBD

Please see the svllabus (Page 391) for more information.

If you are unable to register for the class because it is full, just wait. Historically, slots
have always opened up. You can add yourself to gradescope and submit homework in
the meantime



Example 1: Computing volumes in high dimensions

25d (1-6)d

Theorem. A deterministic -approximation algorithm requires 2 oracle queries.

Maybe a Monte Carlo algorithm? o
Doesn’t work in higher
Pick random points in the ball dimensions!

See how many of them are in K

When K is a cube inside BZ,

Vol(K)

< o—Q(d)
) Vol(Bs') ~

Need exponentially many points!
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Example 1: Computing volumes in high dimensions

Dyer-Frieze-Kannan algorithm
1. Change coordinates s.t. K is well-rounded, B$ € K € RBJ
2. LletK; =2"Y'BinKsothatK,=B%and Ky €K, € SK,, S K, =K

3.  Compute

= Vol(Ki—.) . > estimate via Monte Carlo
Vi VOl(Kl) Vi= 2’
4. Output
_ m 1 Using concentration inequality, we
V = Vol(B) - 1_L=1)/_i can show that V =~ E[V] = Vol(K)
Vol(K;) Vol(K,) Vol(K,,,)

Vol(K) = Vol(Ko) - 3/ Ky Vol(K)  Vol(K,_,)
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Example 1: Computing volumes in high dimensions

Dyer-Frieze-Kannan algorithm
1. Change coordinates s.t. K is well-rounded, B$ € K € RBJ

2. letK; =2"B¢nKsothatKy=B%and Ky €K, S--SK,,_.,SK,, =K

3.  Compute
_ Vol(K;_+)

1 . .
= . > = estimate via Monte Carlo
i = Vol(k) fi=z

4. Output
m 1
Vo= Vol(B)-l_[ il
i=1Yi

DFK algorithm as a reduction:

volume estimation = sampling (uniformly sample from rB¢ N K)
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Example 1: Computing volumes in high dimensions

How to draw a uniformly random sample from a convex body?
- Basicidea: construct a Markov chain so that the stationary distribution is the target uniform distribution

over the convex body

“Running a randomized algorithm that simulate some stochastic process. When the simulation time —
oo, the output distribution of the algorithm is the uniform distribution”

How fast does Markov chain mix? (How long should we run the simulation algorithm?)

- Deep connection to important mathematical questions in Asymptotic Convex Geometry and Functional
Analysis (e.g., isoperimetry, localization, concentration of measure, KLS conjecture, Bourgain's slicing

conjecture, etc.)

We’ll discuss some of them in this course
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Example 1: Computing volumes in high dimensions

BALLWALK(J):

e Pick a uniform random point y from the ball of radius 0 centered at the current point x.

e If yisin K, go to y; else stay at x.

-, -

Lee-Vempala ’16: under KLS conjecture and for a “good” convex body K, ball walk can sample uniformly
over K in O(d??®) steps
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Example 2: Quantum and Boolean function analysis

Now, let’s talk about quantum computing, a “new” topic in TCS

- It’s actually not new at all.

> Shor’s algorithm was developed in 1994.
> ‘Quantum computation’ became a topic of interest in STOC around 1997, and in FOCS in 1999.

- It's new probably because quantum computing headlines appear every day (>90% is hype )

NP-complete
Quantum

Post-quantum
. . N P crypto?
Polynomial Time

How powerful is QC from a computational
complexity perspective?

Bounded-Error
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Example 2: Quantum and Boolean function analysis

Black-box model / oracle model / query complexity model

. £:{0,1}" - {0,1}, and tt(f) € {0,1}2" is the input of some decision problem

Classical query

| x) | x)

f(x)

ly) ly @ f(x))

How many (classical/quantum) queries are needed to solve the decision problem?
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Example 2: Quantum and Boolean function analysis

Positive result: Forrelation

Given f, g € {0,1}"™ - {—1,1}, the forrelation is defined as

O(f, g) = 273/2 z f)gly)(—=1)*Y = “Fourier Correlation”
x,y€{0,1}1

Decide |®(f, g)| < 1/100 or |®(f,g)| = 3/5

Quantum algorithm just need 1 query while any classical algorithm need 20(n) gueries!

Negative result: Aaronson-Ambainis Conjecture

Any quantum algorithm that makes T queries to compute a Boolean function, 3 classical algorithm that
makes only poly(T) queries and is correct for “most” of the inputs.

No “big” quantum speedup for generic unstructured decision problem!
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Example 2: Quantum and Boolean function analysis

AA conjecture is equivalent to the following conjecture in Boolean function analysis with
no quantum at all:

Any function f:{—1,1}" — R can be expressed as

f=Y a||u  aer  xegriyy
Sc[n]

ie$
and we define the degree of f as d := max |S| (think of f as a polynomial)
as

Forany f:{+1}" — [0,1], there exists a coordinate i € [n] such that

2\ 0(1)
ot = (LZE0) e 0 = L (70 - £-0)

Influence vs. Variance Flip the i-th bit
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Announcements

1. I'll be out of town on Thursday (01/15), and the class will be canceled

2. Homework: watch the following video lectures by Ryan O'Donnell:

How to do CS Theory (https://youtu.be/YFUIPg8P2sY?si=lggbx40 qv60uhka)
Street Fighting Mathematics (https://youtu.be/qP4XEZ54eSc?si=XxXrdhxugMmdMKn )
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